Natural Numbers (\(\mathbb{N}\))

 

e.g. - {\({1,2,3,4 ...}\)}


Examples of HCF and LCM

\(\text{e.g. 1 - Express 240 as a product of primes.}\)

              240
              / \
           (2)  120
                / \
              (2) 60
                  / \
                (2) 30
                    / \
                  (2) 15
                      / \
                    (3) (5)

\(240 = 2\times2\times2\times2\times3\times5\)

           \(=2^4\times3\times5\)


\(\text{e.g. 2 - Find (i) the HCF and (ii) the LCM of 512 and 280.}\)

\(512={2}\times{2}\times{2}\times2\times2\times2\times2\times2\times2\)             \(280={2}\times{2}\times{2}\times5\times7\)

\(512=2^9\)

\(\text{HCF}=2^3=8\)

\(\text{LCM}=2^3\times2^6\times5\times7=17920\)


 

Integers (\(\mathbb{z}\))

 

e.g. - {\({... -3,-2,-1,0,1,2,3 ...}\)}

 

If \(a,b,c\) are integers:


 

Rational Numbers (\(\mathbb{Q}\))

 


 

Real Numbers (\(\mathbb{R}\))

 

 


 

Irrational Numbers (\(\mathbb{R}/\mathbb{Q}\)) or (\(\mathbb{I}\))

 

Note: \(\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\)


 

Proof that \(\sqrt2\) is irrational (Proof by Contradiction)

We will use proof by contradiction to prove: \(\sqrt2\) is irrational.

Proof: Assume that \(\sqrt2\) is rational and can therefore be written in the form of \({p}\over{q}\) where \(p\) and \(q\) have no common factors.

\(\sqrt2 = \frac{p}{q} \Rightarrow 2 = \frac{p^2}{q^2}\)

\(\therefore p^2 = 2q^2\)

\(\text{let }p=2k\)

\(\Rightarrow p^2=4k^2\)

\(p^2=2q^2\text{ and }p^2=4k^2\)

\(\Rightarrow 2q^2=4k^2\)

\(\Rightarrow q^2=2k^2\)

\(2\) is a factor of \(q^2\), so \(2\) is also a factor of \(q\)

Therefore \(2\) is a common factor of \(p\) and \(q\), this contradicts the original assumption. Thus \(\sqrt2\) is an irrational number.


 

Construct \(\sqrt2\)

 

Proof:

\(|ab|=|bc|=1\) (radii of circle)

\(|ab|^2+|bc|^2=|ac|^2\)

\(1^2+1^2=|ac|^2\)

\(2=|ac|^2\)

\(\sqrt2=|ac|\)


 

Construct \(\sqrt3\)

 

 

Proof:

\([CD]\) and \([AB]\) are perpendicular bisectors of each other.

\(\therefore |AE|=\frac{1}{2}|AB|=1\)

\(|AC|=1\) (Construction)

\(|AE|^2+|EC|^2=|AC|^2\)

\((\frac{1}{2})^2+|EC|^2=1^2\)

\(|EC|^2=1-\frac{1}{4}=\frac{3}{4}\)

\(\therefore |EC|=\sqrt\frac{3}{4}=\frac{\sqrt3}{2}\)

\(|CD|=2|EC|=2(\frac{\sqrt3}{2})\)

\(\therefore|CD|=\sqrt3\)


 

Rounding and Significant Figures

 

E.G. Write the following correct to one decimal place.

i) \(2.57\)

ans \(=2.6\)

ii) \(39.32\)

ans \(=39.3\)


E.G. Write the following numbers to two significant figures:

i) \(3.67765\)

ans \(=3.7\)

ii) \(61,343\)

ans \(=61000\)

iii) \(0.00356\)

ans \(=0.0036\)


E.G. Write the following numbers in scientific notation:

i) \(725,000,000,000\)

ans \(=7.25\times10^{11}\)

ii) \(980,000\)

ans \(=9.8\times10^{5}\)

iii) \(0.0000056\)

ans \(=5.6\times10^{-6}\)