Indices and Logarithms
Laws of Indices
| Law 1 | \(a^p\times a^q=a^{p+q}\) | \(3^2\times3^4=3^6\) |
| Law 2 | \(\frac{a^p}{a^q}=a^{p-q}\) | \(\frac{7^6}{7^3}=7^3\) |
| Law 3 | \((a^p)^q=a^{pq}\) | \((4^2)^3=4^6\) |
| Law 4 | \(a^0=1\) | \(6^0=1\) |
| Law 5 | \(a^{\frac{1}{q}}=(\sqrt[q]{a})^p\) | \(27^{\frac{1}{3}}=\sqrt[3]{27}=3\) \(\quad\quad\quad[\sqrt{a}=a^\frac{1}{2}]\) |
| Law 6 | \(a^\frac{p}{q}=(\sqrt[q]{a})^p\) | \(4^\frac{3}{2}=(\sqrt[2]{4})^3=8\) |
| Law 7 | \(a^{-p}=\frac{1}{a^p}\) | \(3^{-2}=\frac{1}{3^2}=\frac{1}{9}\) |
| Law 8 | \((ab)^p=(a^p)(b^p)\) | \((2x)^6=(2)^6(x)^6\) |
| Law 9 | \((\frac{a}{b})^p=\frac{a^p}{b^p}\) | \(((\frac{4}{3})^5=\frac{4^5}{3^5}\) |
Laws of Surds
| Law 1 | \(\sqrt{a} \sqrt{b}=\sqrt{ab}\) |
| Law 2 | \(\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\) |
| Law 3 | \(\sqrt{a^2}=a\) |
Logarithms
-
Logarithms and indices are closely linked.
-
Raising a base to a power and finding the logarithm to the base are inverse operations
\(2^3=8 \Leftarrow\Rightarrow log_2(8)=3\)
\(a^n=y \Leftarrow\Rightarrow log_a(y)=n\)
| Law 1 | \(log_a(xy)=log_a(x)+log_a(y)\) | \(log_24+log_28=log_232\) |
| Law 2 | \(log_a(\frac{x}{y})=log_ax-log_ay\) | \(log_416-log_44=log_44\) |
| Law 3 | \(log_ax^q=qlog_ax\) | \(log_55^3=3log_55\) |
| Law 4 | \(log_a1=0\) | \(log_21=0\) |
| Law 5 | \(log_a\frac{1}{x}=-log_ax\) | \(log_3\frac{1}{27}=-log_327\) |
| Law 6 | \(log_aa^x=x\) | \(log_22^4=4\) |
| Law 7 | \(a^{log_ax}=x\) | \(10^{log_{10}100=100}\) |
| Law 8 | \(log_bx=\frac{log_ax}{log_ab}\) | \(log_416=\frac{log_216}{log_24}\) |
- Logs are used to solve practical problems.
Examples
\[
\displaylines{
\text{Solve }4^x=\frac{8}{\sqrt2}, x\in\mathbb{Q}
\\\\
(2^2)^x=\frac{2^3}{2^{\frac{1}{2}}}
\\\\
2^{2x}=2^{3-\frac{1}{2}}
\\\\
2x=x\frac{1}{2}
\\\\
x=\frac{2\frac{1}{2}}{2}
\\\\
x=1\frac{1}{4}
}
\]
\[
\displaylines{
\text{Solve the equation: }
\\\\
3^{2x+1}-28(3x)+9=0
\\\\
(3^1)(3^{2x})-28(3x)+9=0
\\\\
3(3^x)^2-28(3^x)+9=0
\\\\
\text{let }3^x=y
\\\\
3y^2-28y+9=0
\\\\
3y^2-27y-1y+9=0
\\\\
3y(y-9)-1(y-9)=0
\\\\
(3y-1)(y-9)=0
\\\\
3y-1=0 \quad\text{ or }\quad y-9=0
\\\\
3y=1 \quad\text{ or }\quad y=9
\\\\
y=\frac{1}{3} \quad\text{ or }\quad y=9
\\\\
3^x=\frac{1}{3} \quad\text{ or }\quad 3^x=9
\\\\
\quad\quad\quad\quad\quad\quad\quad3^x=3^2
\\\\
\quad\quad\quad\quad\quad\quad\quad x=2
}
\]
\[
\displaylines{
\text{Simplify:}
\\\\
\sqrt{50}+\sqrt{8}+\sqrt{32}
\\\\
\sqrt{25}\sqrt2+\sqrt4\sqrt2+\sqrt{16}\sqrt2
\\\\
5\sqrt2+2\sqrt2+4\sqrt2
\\\\
11\sqrt2
}
\]
\[
\displaylines{
\text{Simplify: }
\\\\
(\sqrt5+2\sqrt2)(\sqrt5-\sqrt2)
\\\\
\sqrt5(\sqrt5-\sqrt2)+2\sqrt2(\sqrt5-\sqrt2)
\\\\
5-\sqrt{10}+2\sqrt{10}-2(2)
\\\\
5+\sqrt{10}-4
\\\\
1+\sqrt{10}
}
\]
\[
\displaylines{
\text{Rationalise the Denominator: }
\\\\
\text{i)}\quad \frac{5}{\sqrt5}
\\\\
\frac{5}{\sqrt5}\cdot\frac{\sqrt5}{\sqrt5}
\\\\
\frac{5\sqrt5}{5}
\\\\
\sqrt5
\\\\
\\\\
\text{ii)}\quad \frac{4\sqrt{15}}{\sqrt{20}}
\\\\
\frac{4\sqrt{15}}{\sqrt{20}}\cdot\frac{\sqrt{20}}{\sqrt{20}}
\\\\
\frac{4\sqrt{300}}{20}
\\\\
\frac{4\sqrt{100}\sqrt{3}}{20}
\\\\
\frac{4(10)(\sqrt3)}{20}
\\\\
\frac{40\sqrt2}{20}
\\\\
2\sqrt3
\\\\
\\\\
\text{iii)}\quad \frac{\sqrt2-\sqrt3}{\sqrt2+\sqrt3}
\\\\
\frac{\sqrt2-\sqrt3}{\sqrt2+\sqrt3} \cdot \frac{\sqrt2-\sqrt3}{\sqrt2-\sqrt3}
\\\\
\frac{\sqrt2(\sqrt2-\sqrt3)-\sqrt3(\sqrt2-\sqrt3)}{\sqrt2(\sqrt2-\sqrt3)+\sqrt3(\sqrt2-\sqrt3)}
\\\\
\frac{2-\sqrt6-\sqrt6+3}{2-\sqrt6+\sqrt6-3}
\\\\
\frac{5-2\sqrt6}{-1}
\\\\
-5+2\sqrt6
}
\]
\[
\displaylines{
\text{Evaluate: }\quad log_{16}64
\\\\
log_{16}64=x
\\\\
16^x=64
\\\\
(4^2)^x=4^3
\\\\
2x=3
\\\\
x=\frac{3}{2}
}
\]
\[
\displaylines{
\text{Solve }\quad log_{10}(3x+1)=2
\\\\
3x+1=10^2
\\\\
3x+1=100
\\\\
3x=100-1
\\\\
3x=99
\\\\
x=33
}
\]
\[
\displaylines{
\text{Solve }\quad log_2(x+3)=log_2(x-9)^2
\\\\
(x+3)=(x-9)^2
\\\\
x+3=x(x-9)-9(x-9)
\\\\
x+3=x^2-18x+81
\\\\
x^2-19x+78=0
\\\\
x^2-13x-6x+78=0
\\\\
x(x-13)-6(x-13)=0
\\\\
(x-6)(x-13)=0
\\\\
x=6\quad\text{ or }\quad x=13
}
\]
\[
\displaylines{
\text{Solve }\quad log_2(x+1)-log_2(x-1)=1,x\gt1
\\\\
log_2(\frac{x+1}{x-1})=1
\\\\
\frac{x+1}{x-1}=2^1
\\\\
\frac{x+1}{x-1}=2
\\\\
x+1=2(x-1)
\\\\
x+1=2x-2
\\\\
2x-x=2+1
\\\\
x=3
}
\]
\[
\displaylines{
\text{Solve }\quad 4log_x2=log_2x+3\quad,x>1,x\in\mathbb{R}
\\\\
log_x2^4=log_2x+3
\\\\
\frac{log_216}{log_2x}=log_2x+3
\\\\
\frac{4}{log_2x}=log_2x+3
\\\\
\text{Let }\quad log_2x=y
\\\\
\frac{4}{y}=y+3
\\\\
4=y^2+3y
\\\\
y^2+3y-4=0
\\\\
(y-1)(y+4)=0
\\\\
y=1\quad\text{ or }\quad y=-4
\\\\
\\\\
log_2x=1\quad\text{ or }\quad log_2x=-4
\\\\
x=2\quad\quad\text{ or }\quad\quad x=\frac{1}{16}
}
\]